
HTML5 for Responsive

Designs
HTML5 evolved from the Web Applications 1.0 project, started by the Web
Hypertext Application Technology Working Group (WHATWG) before being later
embraced by the W3C. Subsequently, large parts of the speciication are weighted
towards dealing with web applications. If you're not building web applications, that
doesn't mean there aren't plenty of things in HTML5 you could (and indeed should)
embrace when embarking on a responsive design. So, whilst some features of
HTML5 are directly relevant to building better responsive web pages (for example,
leaner code), others are outside our responsive remit.

HTML5 also provides speciic tools for handling forms and user input. This set of
features takes much of the burden away from more resource heavy technologies like
JavaScript for things like form validation. However, we're going to look at HTML5
forms separately in Chapter 8, Conquer Forms with HTML5 and CSS3.

In this chapter, we will cover the following:

•	 What parts of HTML5 can we use right now?
•	 How to write HTML5 pages

•	 The economies of using HTML5

•	 Obsolete HTML features

•	 New semantic HTML5 elements

•	 Using Web Accessibility Initiative - Accessible Rich Internet Applications
(WAI-ARIA) for increased semantics and aiding assistive technologies

•	 Embedding media

•	 Responsive HTML5 and iFrame videos

•	 Making a website available ofline

HTML5 for Responsive Designs

[98]

What parts of HTML5 can we use today?
Although the full speciication of HTML5 is yet to be ratiied, most new features
of HTML5 are already supported, to varying degrees, by modern web browsers
including Apple's Safari, Google Chrome, Opera, and Mozilla Firefox and even
Internet Explorer 9! So, whilst it's improbable everything in the current draft of
the HTML5 speciication will survive until recommendation by the W3C, there are
plenty of new features that can be implemented right now.

Most sites can be written in HTML5
Currently, if I'm tasked to build a website, my default markup would be HTML5
rather than HTML 4.01. Where the opposite was the case only a few years ago, at
present, there has to be a compelling reason not to markup a site in HTML5. All
modern browsers understand common HTML5 features with no problems (the new
structural elements, video and audio tags) and older versions of IE can be served
polyills to address all of the shortfalls I have encountered.

What are polyills?
The term polyill was originated by Remy Sharp as an allusion to illing
the cracks in older browsers with Polyilla (known as Spackling Paste in
the US). Therefore, a polyill is a JavaScript shim that effectively replicates
newer features in older browsers. However, it's important to appreciate
that polyills add extra lab to your code. Therefore, just because you can
add three polyill scripts to make Internet Explorer 6 render your site the
same as every other browser doesn't mean you necessarily should!

Polyills, shims, and Modernizr
Ordinarily, older versions of Internet Explorer (pre v9) have no understanding of any
of the new semantic elements of HTML5. However, some time ago, Sjoerd Visscher
discovered that if elements are created with JavaScript irst, Internet Explorer is able
to recognize and style them accordingly. Armed with this knowledge, JavaScript
whiz Remy Sharp created a lightweight enabling script (http://remysharp.
com/2009/01/07/html5-enabling-script/) that, if included in an HTML5 page,
magically switched these elements on for older versions of Internet Explorer. For a
long time, pioneers of HTML5 would stick this script in their markup to enable users
viewing in Internet Explorer 6, 7, and 8 to enjoy a comparable experience.

http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/

Chapter 4

[99]

However, things have now progressed signiicantly. There's now a new kid on
the block that does all this and a whole lot more. Its name is Modernizr (http://
www.modernizr.com) and if you're writing pages in HTML5, it's well worth your
attention. Besides enabling HTML5 structural elements for IE, it also provides the
ability to conditionally load further polyills, CSS iles, and additional JavaScript iles
based on a number of feature tests.

So, as there are few good reasons for not using HTML5, let's get going and start
writing some markup, HTML5 style.

Want a shortcut to great HTML5 code? Consider the HTML5 Boilerplate

If time is short and you need a good starting point for your project,
consider using the HTML5 Boilerplate (http://html5boilerplate.
com/). It's a pre-made "best practice" HTML5 ile, including essential
styles (such as the aforementioned normalize.css), polyills, and tools such
as Modernizr. It also includes a build tool that automatically concatenates
CSS and JS iles and strips comments to create production ready code.
Highly recommended!

How to write HTML5 pages
Open an existing web page. There is a chance that the irst few lines will look
something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Delete the preceding code snippet and replace it with the following code snippet:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset=utf-8>

Save the document and you should now have your irst HTML5 page as far as the
W3C validator is concerned (http://validator.w3.org/).

Don't worry, that's not the end of the chapter! That crude exercise is merely meant to
demonstrate HTML5's lexibility. It's an evolution of the markup you already write,
not a revolution. We can use it to supercharge the markup that we already know
how to write.

http://www.modernizr.com
http://www.modernizr.com
http://validator.w3.org/

HTML5 for Responsive Designs

[100]

So, what did we actually do there? First of all, we stated the new HTML5
Doctype declaration:

<!DOCTYPE html>

If you're a fan of lowercase, then <!doctype html> is just as good. It makes
no difference.

HTML5 Doctype—why so short?

The HTML5 <!DOCTYPE html> Doctype is so short that this was
determined to be the shortest method of telling a browser to render the
page in "standard mode". This most eficient syntax mindset is prevalent
throughout much of HTML5.

After the Doctype declaration, we opened the HTML tag, speciied the language, and
then opened the <head> section:

<html lang="en">

<head>

Sprechen sie Deutsche?
According to the W3C speciications (http://dev.w3.org/html5/
spec/Overview.html#attr-lang), the lang attribute speciies the
primary language for the element's contents and for any of the element's
attributes that contain text. If you're not writing pages in English, you'd
best specify the correct language code. For example, for Japanese the
HTML tag would be <html lang="ja">. For a full list of languages
take a look at http://www.iana.org/assignments/language-
subtag-registry.

Finally, we speciied the character encoding. As it's a void element it doesn't require
a closing tag:

<meta charset=utf-8>

Unless you have a good reason to specify otherwise, it's almost always UTF-8.

Chapter 4

[101]

Economies of using HTML5
I remember, in school, every so often our super-mean (but actually very good) math
teacher would be away. The class would breathe a collective sigh of relieve as, rather
than "Mr Mean" (names have been changed to protect the innocent), the replacement
was usually an easy-going and amiable man who sat quietly, leaving us to get on
without shouting or constant needling. He didn't insist on silence whilst we worked,
he didn't much care how elegant our workings were on the page – all that mattered
was the answers. If HTML5 were a math teacher, it would be that easy-going supply
teacher. I'll qualify this bizarre analogy…

If you pay attention to how you write code, you'll typically use lowercase for the
most part, wrap attribute values in quotation marks, and declare a "type" for scripts
and stylesheets. For example, you might link to a stylesheet like this:

<link href="CSS/main.css" rel="stylesheet" type="text/css" />

HTML5 doesn't require such detail, it's just as happy to see this:

<link href=CSS/main.css rel=stylesheet >

I know, I know. It makes me feel weird, too. There's no end tag/slash, there are
no quotation marks around the attribute values, and there is no type declaration.
However, easy going HTML5 doesn't care. The second example is just as valid as
the irst.

This more lax syntax applies across the whole document, not just linked CSS and
JavaScript elements. For example, specify a div like this if you like:

<div id=wrapper>

That's perfectly valid HTML5. The same goes for inserting an image:

That's also valid HTML5. No end tag/slash, no quotes, and a mix of capitalization
and lower case characters. You can even omit things such as the opening <head> tag
and the page still validates. What would XHTML 1.0 say about this!

HTML5 for Responsive Designs

[102]

A sensible approach to HTML5 markup
Although we are aiming to embrace a mobile irst mindset for our responsive web
pages and designs, I'll admit I can't fully let go of writing what I consider the best
practice markup (note, in my case that was adhering to the XHTML 1.0 markup
standards which required XML syntax). It's true that we can lose some minute
amounts of data from our pages by embracing these coding economies but in all
honesty, if necessary, I'll make up the shortfall by leaving an image out of my
design instead!

For me, the extra characters (end slashes and quotes around attribute values) are
worth it for increased code legibility. When writing HTML5 documents therefore
I tend to fall somewhere between the old style of writing markup (which is still
valid code as far as HTML5 is concerned, although it may generate warnings in
validators/conformance checkers) and the economies afforded by HTML5. To
exemplify, for the CSS link above, I'd go with the following:

<link href="CSS/main.css" rel="stylesheet"/>

I've kept the closing tag and the quotation marks but omitted the type attribute. The
point to make here is that you can ind a level you're happy with yourself. HTML5
won't be shouting at you, lagging up your markup in front of the class and standing
you in a corner for not validating.

All hail the mighty <a> tag
One more really handy economy in HTML5 is that we can now wrap multiple
elements in an <a> tag. (Woohoo! About time, right?) Previously, if you wanted your
markup to validate, it was necessary to wrap each element in its own <a> tag. For
example, see the following code snippet:

<h2>The home page</h2>

<p>This paragraph also links to the home page</
a></p>

However, we can ditch all the individual <a> tags and instead wrap the group as
demonstrated in the following code snippet:

<h2>The home page</h2>

<p>This paragraph also links to the home page</p>

Chapter 4

[103]

The only limitations to keep in mind are that, understandably, you can't wrap one
<a> tag within another <a> tag and you can't wrap a form in an <a> tag either.

Obsolete HTML features
Besides things such as the language attributes in script links, there are some further
parts of HTML you may be used to using that are now considered "obsolete" in
HTML5. It's important to be aware that there are two camps of obsolete features in
HTML5—conforming and non-conforming. Conforming features will still work but
will generate warnings in validators. Realistically, avoid them if you can but they
aren't going to make the sky fall down if you do use them. Non-conforming features
may still render in certain browsers but if you use them, you are considered very,
very naughty and you might not get a treat at the weekend!

An example of an obsolete but conforming feature would be using a border attribute
on an image. This was historically used to stop images showing a blue border about
them if they were nested inside a link. For example, see the following:

Instead, you are advised to use CSS instead for the same effect.

In terms of obsolete and non-conforming features, there is quite a raft. I'll confess
that many I have never used (some I've never even seen!). It's possible you may
experience a similar reaction. However, if you're curious, you can ind the full list
of obsolete and non-conforming features at http://dev.w3.org/html5/spec/
Overview.html#non-conforming-features. Notable obsolete and non-conforming
features are strike, center, font, acronym, frame, and frameset.

New semantic elements in HTML5
My dictionary deines semantics as "the branch of linguistics and logic concerned
with meaning". For our purposes, semantics is the process of giving our markup
meaning. Why is this important? Glad you asked. Consider the structure of our
current markup for the And the winner isn't... site:

<body>

<div id="wrapper">

 <div id="header">

 <div id="logo"></div>

 <div id="navigation">

 Why?

HTML5 for Responsive Designs

[104]

 </div>

 </div>

 <!-- the content -->

 <div id="content">

 </div>

 <!-- the sidebar -->

 <div id="sidebar">

 </div>

 <!-- the footer -->

 <div id="footer">

 </div>

</div>

</body>

Most writers of markup will see common conventions for the ID names of the
div's used—header, content, sidebar, and so on. However, as far as the code itself
goes, any user agent (web browser, screen reader, search engine crawler, and
so on) looking at it couldn't say for sure what the purpose of each div section is.
HTML5 aims to solve that problem with new semantic elements. From a structure
perspective these are explained in the sections that follow.

The <section> element
The <section> element is used to deine a generic section of a document or
application. For example, you may choose to create sections round your content;
one section for contact information, another section for news feeds, and so on. It's
important to understand that it isn't intended for styling purposes. If you need to
wrap an element merely to style it, you should continue to use a <div> as you would
have before.

To ind out what the W3C HTML5 speciication says about <section>,
go to the following URL:

http://dev.w3.org/html5/spec/Overview.html#the-
section-element

Chapter 4

[105]

The <nav> element
The <nav> element is used to deine major navigational blocks—links to other pages
or to parts within the page. As it is for use in major navigational blocks it isn't strictly
intended for use in footers (although it can be) and the like, where groups of links to
other pages are common.

To ind out what the W3C HTML5 speciication says about <nav>, go to
the following URL:

http://dev.w3.org/html5/spec/Overview.html#the-nav-
element

The <article> element
The <article> element, alongside <section> can easily lead to confusion. I
certainly had to read and re-read the speciications of each before it sank in.
The <article> element is used to wrap a self-contained piece of content. When
structuring a page, ask whether the content you're intending to use within a
<article> tag could be taken as a whole lump and pasted onto a different site and
still make complete sense? Another way to think about it is would the content being
wrapped in <article> actually constitute a separate article in a RSS feed? The
obvious example of content that should be wrapped with an <article> element
would be a blog post. Be aware that if nesting <article> elements, it is presumed
that the nested <article> elements are principally related to the outer article.

What the W3C HTML5 speciication says about <article>:

http://dev.w3.org/html5/spec/Overview.html#the-
article-element

The <aside> element
The <aside> element is used for content that is tangentially related to the content
around it. In practical terms, I often use it for sidebars (when it contains suitable
content). It's also considered suitable for pull quotes, advertising, and groups of
navigation elements (such as Blog rolls, and so on).

HTML5 for Responsive Designs

[106]

For more on what the W3C HTML5 speciication says about
<aside>, visit:

http://dev.w3.org/html5/spec/Overview.html#the-
aside-element

The <hgroup> element
If you have a number of headings, taglines and subheadings in <h1>,<h2>,<h3>,
and the subsequent tags then consider wrapping them in the <hgroup> tag. Doing so
will hide the secondary elements from the HTML5 outline algorithm as only the irst
heading element within an <hgroup> contributes to the documents outline.

The HTML5 outline algorithm
HTML5 allows each sectioning container to have its own self-contained outline.
This means it's no longer necessary to think constantly about which level of header
tag you're at. For example, within a blog, I can set my post titles to use the <h1> tag,
whilst my blog title itself also has a <h1> tag. For example, consider the following
structure:

 <hgroup>
 <h1>Ben's blog</h1>
 <h2>All about what I do</h2>
 </hgroup>
 <article>
 <header>
 <hgroup>
 <h1>A post about something</h1>
 <h2>Trust me this is a great read</h2>
 <h3>No, not really</h3>
 <p>See. Told you.</p>
 </hgroup>
 </header>
 </article>

Despite having multiple <h1> and <h2> headings, the outline still appears as follows:

•	 Ben's blog

	° A post about something

As such, you don't need to keep track of the heading tag you need to use. You can
just use whatever level of heading tag you like within each piece of sectioned content
and the HTML5 outline algorithm will order it accordingly.

Chapter 4

[107]

You can test the outline of your documents using HTML5 outliners at one the
following URLs:

•	 http://gsnedders.html5.org/outliner/

•	 http://hoyois.github.com/html5outliner/

The following screenshot shows the HTML 5 Outliner page:

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/

HTML5 for Responsive Designs

[108]

For more on what the W3C HTML5 speciication says about
<hgroup>, visit:

http://dev.w3.org/html5/spec/Overview.html#the-
hgroup-element

The <header> element
The <header> element doesn't take part in the outline algorithm so can't be used to
section content. Instead it should be used as an introduction to content. Practically,
the <header> can be used for the "masthead" area of a site's header but also as an
introduction to other content such as an introduction to a <article> element.

What the W3C HTML5 speciication says about <header>:
http://dev.w3.org/html5/spec/Overview.html#the-
header-element

The <footer> element
Like the <header>, the <footer> element doesn't take part in the outline algorithm
so doesn't section content. Instead it should be used to contain information about
the section it sits within. It might contain links to other documents or copyright
information for example. Like the <header> it can be used multiple times within
a page if needed. For example, it could be used for the footer of a blog but also
a footer within a blog post <article>. However, the speciication notes that
contact information for the author of a blog post should instead be wrapped by
an<address> element.

What the W3C HTML5 speciication says about <footer>:
http://dev.w3.org/html5/spec/Overview.html#the-
footer-element

Chapter 4

[109]

The <address> element
The <address> element is to be used explicitly for marking up contact information
for its nearest <article> or <body> ancestor. To confuse matters, keep in mind that
it isn't to be used for postal addresses and the like unless they are indeed the contact
addresses for the content in question. Instead postal addresses and other arbitrary
contact information should be wrapped in good ol' <p> tags.

For more on what the W3C HTML5 speciication says about
<address>:

http://dev.w3.org/html5/spec/Overview.html#the-
address-element

Practical usage of HTML5's structural
elements
Let's look at some practical examples of these new elements. I think the <header>,
<nav>, and <footer> elements are pretty self explanatory so for starters, let's
take the current And the winner isn't... home page markup and amend the header,
navigation, and footer areas (see highlighted areas in the following code snippet):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script>document.cookie='resolution='+Math.max(screen.width,screen.
height)+'; path=/';</script>
<link href="css/main.css" rel="stylesheet" />

</head>

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <header>

 <div id="logo">And the winner isn't...</div>
 <nav>

 Why?
 Synopsis

HTML5 for Responsive Designs

[110]

 Stills/Photos
 Videos/clips
 Quotes
 Quiz

 </nav>
 </header>
 <!-- the content -->
 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>
 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
<p>We're here to put things right. </p>
 these should have won »
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 <!-- the footer -->
 <footer>
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </footer>

</div>
</body>
</html>

As we've seen however, where articles and sections exist within a page, these
elements aren't restricted to one use per page. Each article or section can have its
own header, footer, and navigation. For example, if we add a <article> element
into our markup, it might look as follows:

Chapter 4

[111]

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <header>
 <div id="logo">And the winner isn't...</div>
 <nav>

 Why?

 </nav>
 </header>
 <!-- the content -->
 <div id="content">
 <article>
 <header>An article about HTML5</header>
 <nav>
 related link 1
 related link 2
 </nav>
 <p>here is the content of the article</p>
 <footer>This was an article by Ben Frain</footer>
 </article>

As you can see in the preceding code, we are using a <header>, <nav>, and
<footer> for both the page and also the article contained within it.

Let's amend our sidebar area. This is what we have at the moment in
HTML 4.01 markup:

<!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>

HTML5 for Responsive Designs

[112]

Our sidebar content is certainly "tangentially" related to the main content, so irst of
all, let's remove <div id="sidebar"> and replace it with <aside>:

<!-- the sidebar -->
 <aside>
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </aside>

Excellent! However, if we take a look in the browser you'd be forgiven for letting a
minor expletive slip out…

Chapter 4

[113]

Talk about one step forward and two steps back! The reason is we haven't been and
amended the CSS to match the new elements. Let's do that now before we proceed.
We need to amend all references to #header to be simply header, all references to
#navigation to be nav, and all references to #footer to be footer. For example, the
irst CSS rule relating to the header will change from:

#header {

 background-position: 0 top;

 background-repeat: repeat-x;

 background-image: url(../img/buntingSlice3Invert.png);

 margin-right: 1.0416667%; /* 10 ÷ 960 */

 margin-left: 1.0416667%; /* 10 ÷ 960 */

 width: 97.9166667%; /* 940 ÷ 960 */

}

To become:

header {

 background-position: 0 top;

 background-repeat: repeat-x;

 background-image: url(../img/buntingSlice3Invert.png);

 margin-right: 1.0416667%; /* 10 ÷ 960 */

 margin-left: 1.0416667%; /* 10 ÷ 960 */

 width: 97.9166667%; /* 940 ÷ 960 */

}

This was particularly easy for the header, navigation, and footer as the IDs were
the same as the element we were changing them for – we merely omitted the initial
'#'. The sidebar is a little different: we need to change references from #sidebar
to aside instead. However, performing a "ind and replace" in the code editor of
your choice will help here. To clarify, rules like the following:

#sidebar {

}

Will become:

aside {

}

Even if you've written a huge CSS stylesheet, swapping the references from HTML
4.01 IDs to HTML5 elements is a fairly painless task.

HTML5 for Responsive Designs

[114]

Beware multiple elements in HTML5

Be aware that with HTML5 there may be multiple <header>,
<footer>, and <aside> elements within a page so you may
need to write more speciic styles for individual instances.

Once the styles for the And the winner isn't... have been amended accordingly we're
back in business:

Chapter 4

[115]

Now, although we're telling user agents which section of the page is the aside,
within that we have two distinct sections, UNSUNG HEROES and OVERHYPED
NONSENSE. Therefore, in the interest of semantically deining those areas let's
amend our code further:

<!-- the sidebar -->

 <aside>

 <section>

 <div class="sideBlock unSung">

 <h4>Unsung heroes...</h4>

 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>

 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />

 </div>

 </section>

 <section>

 <div class="sideBlock overHyped">

 <h4>Overhyped nonsense...</h4>

 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>

 </section>

 </aside>

HTML5 for Responsive Designs

[116]

The important thing to remember is that <section> isn't intended for styling
purposes, rather to identify a distinct, separate piece of content. Sections should
normally have natural headings too, which suits our cause perfectly. Because of the
HTML5 outline algorithm, we can also amend our <h4> tags to <h1> tags and it will
still produce an accurate outline of our document:

What about the main content of the site?
It may surprise you that there isn't a distinct element to markup the main content of
a page. However, the logic follows that as it's possible to demarcate everything else,
what remains should be the main content of the page.

Chapter 4

[117]

HTML5 text-level semantics
Besides the structural elements we've looked at, HTML5 also revises a few tags that
used to be referred to as inline elements. The HTML5 speciication now refers to
these tags as text-level semantics (http://dev.w3.org/html5/spec/Overview.
html#text-level-semantics). Let's take a look at a few common examples.

The element
Although we may have often used the element merely as a styling hook, it
actually meant "make this bold". However, you can now oficially use it merely
as a styling hook in CSS as the HTML5 speciication now declares that is:

…a span of text to which attention is being drawn for utilitarian purposes without
conveying any extra importance and with no implication of an alternate voice
or mood, such as key words in a document abstract, product names in a review,
actionable words in interactive text-driven software, or an article lede.

The element
OK, hands up, I've often used merely as a styling hook, too. I need to mend my
ways as in HTML5 it's meant to be used to:

…stress emphasis of its contents.

Therefore, unless you actually want the enclosed contents to be emphasized,
consider using a tag or, where relevant, an <i> tag instead.

The <i> element
The HTML5 speciication describes the <i> as:

…a span of text in an alternate voice or mood, or otherwise offset from the normal
prose in a manner indicating a different quality of text.

Sufice it to say, it's not to be used to merely italicize something.

http://dev.w3.org/html5/spec/Overview.html#text-level-semantics
http://dev.w3.org/html5/spec/Overview.html#text-level-semantics

HTML5 for Responsive Designs

[118]

Applying text-level semantics to our markup
Let's take a look at our current markup for the main content area of our home page and
see if we can enhance the meaning to user agents. This is what we have currently:

<!-- the content -->
 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>
 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
<p>We're here to put things right. </p>
 these should have won »
 </div>

We can deinitely improve things here. To begin with, the tag within our
headline <h1> tag is semantically meaningless in that context so as we're attempting
to add emphasis with our style, let's also do it with our code:

<h1>Every year when I watch the Oscars I'm annoyed…</h1>

Let's look at our initial composite again:

Chapter 4

[119]

We also need to style the ilm names differently, but they don't need to suggest a
different mood or voice. Seems like the tag is the perfect candidate here:

<p>that films like King Kong, Moulin Rouge and
Munich get the statue whilst the real cinematic heroes lose
out. Not very Hollywood is it?</p>

Default styling of text-level semantic elements

Because of the historical use of , most browsers
will still render that as bold so depending upon your
situation you may need to restyle the default style in the
associated CSS.

Finally, I mean it when I say 'we're here to put things right' – I'm not messing around
and I want user agents to know it! So, inally, let's wrap that in a <i> tag. You could
argue that I should also use the tag here instead. That would also be ine in this
case but I'm going with <i>. So there! This would look like the following:

<p><i>We're here to put things right.</i></p>

Like , browsers will default to italicize the <i> tag so where needed, restyle
as necessary.

So, we've now added some text-level semantics to our content to give greater
meaning to our markup. There are plenty of other text-level semantic tags in HTML5;
for the full run down, take a look at the relevant section of the speciication at the
following URL:

http://dev.w3.org/html5/spec/Overview.html#text-level-semantics

However, with a little extra effort we can take things one step further still by
providing additional meaning for users of assistive technology.

Adding accessibility to your site with

WAI-ARIA
The aim of WAI-ARIA is principally to solve the problem of making dynamic
content on a page accessible. It provides a means of describing roles, states, and
properties for custom widgets (dynamic sections in web applications) so that they
are recognizable and usable by assistive technology users.

HTML5 for Responsive Designs

[120]

For example, if an onscreen widget displays a constantly updating stock price, how
would a blind user accessing the page know that? WAI-ARIA attempts to solve
this problem. Fully implementing ARIA is outside the scope of this book (for full
information, head over to http://www.w3.org/WAI/intro/aria). However, there
are some very easy to implement parts of ARIA that we can adopt to enhance any
site written in HTML5 for users of assistive technologies.

If you're tasked with building a website for a client, there often isn't any time/money
set aside for adding accessibility support beyond the basics (sadly, it's often given
no thought at all). However, we can use ARIA's landmark roles to ix some of the
glaring shortfalls in HTML's semantics and allow screen readers that support
WAI-ARIA to switch between different screen regions easily.

ARIA's landmark roles
Implementing ARIA's landmark roles isn't speciic to a responsive web design.
However, as it's relatively simple to add partial support (that also validates as
HTML5 with no further effort), there seems little point in leaving it out of any web
page you write in HTML5 from this day onwards. Enough talk! Now let's see how
it works.

Consider our new HTML5 navigation area:

<nav>

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</nav>

We can make this area easy for a WAI-ARIA capable screen reader to jump to by
adding a landmark role attribute to it, as shown in the following code snippet:

<nav role="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</nav>

Chapter 4

[121]

How easy is that? There are landmark roles for the following parts of a
document's structure:

•	 application: This role is used to specify a region used for a web application.

•	 banner: This role is used to specify a sitewide (rather than document speciic)
area. The header and logo of a site, for example.

•	 complementary: This role is used to specify an area complementary to the
main section of a page. In our And the winner isn't... site, the UNSUNG
HEROES and OVERHYPED NONSENSE areas would be considered
complementary.

•	 contentinfo: This role should be used for information about the main
content. For example, to display copyright information at the footer of a
page.

•	 form: You guessed it, a form! However, note that if the form in question is a
search form, use the search role, instead.

•	 main: This role is used to specify the main content of the page.

•	 navigation: This role is used to specify navigation links for the current
document or related documents.

•	 search: This role is used to deine an area that performs a search.

Taking ARIA further

ARIA isn't limited to landmark roles only. To take things
further, a full list of the roles and a succinct description of their
usage suitability is available at http://www.w3.org/TR/
wai-aria/roles#role_definitions

Let's skip ahead and extend our current HTML5 version of the And the winner isn't...
markup with the relevant ARIA landmark roles:

<body>
<div id="wrapper">
 <!-- the header and navigation -->
 <header role="banner">
 <div id="logo">And the winner isn't...</div>
 <nav role="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes

HTML5 for Responsive Designs

[122]

 Quiz

 </nav>

 </header>

 <!-- the content -->

 <div id="content" role="main">

 <h1>Every year when I watch the Oscars I'm annoyed…</h1>

 <p>that films like King Kong, Moulin Rouge and
Munich get the statue whilst the real cinematic heroes lose
out. Not very Hollywood is it?</p>

<p><i>We're here to put things right.</i></p>

 these should have won »

 </div>

 <!-- the sidebar -->

 <aside>

 <section role="complementary">

 <div class="sideBlock unSung">

 <h1>Unsung heroes...</h1>

 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>

 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />

 </div>

 </section>

 <section role="complementary">

 <div class="sideBlock overHyped">

 <h1>Overhyped nonsense...</h1>

 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>

 </section>

 </aside>

 <!-- the footer -->

 <footer role="contentinfo">

 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>

 </footer>

</div>

</body>

Chapter 4

[123]

Test your designs for free with NonVisual Desktop Access

(NVDA)

If you develop on the Windows platform and you'd like to test your ARIA
enhanced designs on a screen reader, you can do so for free with NVDA.
You can get it at the following URL:

http://www.nvda-project.org/

Hopefully, this brief introduction to WAI-ARIA has demonstrated how easy it
is to add partial support for those using assistive technology and you'll consider
enhancing your next HTML5 project with it.

Styling ARIA roles

Like any attributes, it's possible to style them directly using the attribute
selector. For example, you can add a CSS rule to the navigation role
using nav[role="navigation"] {}.

Embedding media in HTML5
For many, HTML5 irst entered their vocabulary when Apple refused to add support
for Flash in their iOS devices. Flash had gained market dominance (some would
argue market stranglehold) as the plugin of choice to serve up video through a
web browser. However, rather than using Adobe's proprietary technology, Apple
decided to rely on HTML5 instead to handle rich media rendering. Whilst HTML5
was making good headway in this area anyway, Apple's public support of HTML5
gave it a major leg up and helped its media tools gain greater traction in the
wider community.

As you might imagine, Internet Explorer 8 and lower versions don't support HTML5
video and audio. However, there are easy to implement fallback workarounds for
Microsoft's ailing browsers, which we'll discuss shortly. Most other modern browsers
(Firefox 3.5+, Chrome 4+, Safari 4, Opera 10.5+, Internet Explorer 9+, iOS 3.2+, Opera
Mobile 11+, Android 2.3+) handle it just ine.

Adding video and audio the HTML5 way
I'll be honest. I've always found adding media such as video and audio into a web
page is an utter pain in HTML 4.01. It's not dificult, just messy. HTML5 makes
things far easier. The syntax is much like adding an image:

<video src="myVideo.ogg"></video>

HTML5 for Responsive Designs

[124]

A breath of fresh air for most web designers! Rather than the abundance of code
currently needed to include video in a page, HTML5 allows a single <video></
video>tag (or <audio></audio> for audio) to do all the heavy lifting. It's also
possible to insert text between the opening and closing tag to inform users when they
aren't using an HTML5 compatible browser and there are additional attributes you'd
ordinarily want to add, such as the height and width. Let's add these in:

<video src="video/myVideo.mp4" width="640" height="480">What, do you
mean you don't understand HTML5?</video>

Now, if we add the preceding code snippet into our page and look at it in Safari, it
will appear but there will be no controls for playback. To get the default playback
controls we need to add the controls attribute. We could also add the autoplay
attribute (not recommended—it's common knowledge that everyone hates videos
that auto-play). This is demonstrated in the following code snippet:

<video src="video/myVideo.mp4" width="640" height="480" controls
autoplay>What, do you mean you don't understand HTML5?</video>

The result of the preceding code snippet is shown in the following screenshot:

Chapter 4

[125]

Further attributes include preload to control pre-loading of media (early HTML5
adopters should note that preload replaces autobuffer), loop to repeat the video,
and poster to deine a poster frame of video. This is useful if there's likely to be a
delay in the video playing. To use an attribute, simply add it to the tag. Here's an
example including all these attributes:

<video src="video/myVideo.mp4" width="640" height="480" controls
autoplay preload="auto" loop poster="myVideoPoster.jpg">What, do you
mean you don't understand HTML5?</video>

Providing alternate source iles
The original speciication for HTML5 called for all browsers to support the direct
playback (without plugins) of video and audio inside Ogg containers. However, due
to disputes within the HTML5 working group, the insistence on support for Ogg
(including Theora video and Vorbis audio), as a baseline standard, was dropped
by more recent iterations of the HTML5 speciication. Therefore at present, some
browsers support playback of one set of video and audio iles whilst others support
the other set. For example, Safari only allows MP4/H.264/AAC media to be used
with the <video> and <audio> elements whilst Firefox and Opera only support Ogg
and WebM.

Why can't we all just get along! (Mars Attacks)

Thankfully, there is a way to support multiple formats within one tag. It doesn't
however preclude us from needing to create multiple versions of our media. Whilst
we all keep our ingers crossed this situation resolves itself in due course, in the
meantime, armed with multiple versions of our ile, we can markup the video
as follows:

<video width="640" height="480" controls autoplay preload="auto" loop
poster="myVideoPoster.jpg">

 <source src="video/myVideo.ogv" type="video/ogg">

 <source src="video/myVideo.mp4" type="video/mp4">

 What, do you mean you don't understand HTML5?

</video>

If the browser supports playback of Ogg, it will use that ile; if not, it will continue
down to the next <source> tag.

HTML5 for Responsive Designs

[126]

Fallback for older browsers
Using the <source> tag in this manner, enables us to provide a number of fallbacks,
if needed. For example, alongside providing both MP4 and Ogg versions, if we
wanted to ensure a suitable fallback for Internet Explorer 8 and lower versions, we
could add a Flash fallback. Further still, if the user didn't have any suitable playback
technology, we could provide download links to the iles themselves:

<video width="640" height="480" controls autoplay preload="auto" loop
poster="myVideoPoster.jpg">

 <source src="video/myVideo.mp4" type="video/mp4">

 <source src="video/myVideo.ogv" type="video/ogg">

 <object width="640" height="480" type="application/x-shockwave-
flash" data="myFlashVideo.SWF">

 <param name="movie" value="myFlashVideo.swf" />

 <param name="flashvars" value="controlbar=over&image=myVideoPo
ster.jpg&file=video/myVideo.mp4" />

 <img src="myVideoPoster.jpg" width="640" height="480" alt="__
TITLE__"

 title="No video playback capabilities, please download the
video below" />

 </object>

 <p> Download Video:

 MP4 Format: "MP4"

 Ogg Format: "Ogg"

 </p>

</video>

Audio and video tags work almost identically
The <audio> tag works on the same principles with the same attributes excluding
width, height, and poster. Indeed, you can also use <video> and <audio> tags
almost interchangeably. The main difference between the two being the fact that
<audio> has no playback area for visible content.

Responsive video
We have seen that, as ever, supporting older browsers leads to code bloat. What
began with the <video> tag being one or two lines ended up being 10 or more lines
(and an extra Flash ile) just to make older versions of Internet Explorer happy! For
my own part, I'm usually happy to forego the Flash fallback in pursuit of a smaller
code footprint but each usage case differs.

Chapter 4

[127]

Now, the only problem with our lovely HTML5 video implementation is it's not
responsive. That's right. All that hard work and our responsive web design doesn't
err… respond. Take a look at the following screenshot and do your best to ight
back the tears:

HTML5 for Responsive Designs

[128]

Thankfully, for HTML5 embedded video, the ix is easy. Simply remove any
height and width attributes in the markup (for example, remove width="640"
height="480") and add the following in the CSS:

video { max-width: 100%; height: auto; }

However, whilst that works ine for iles that we might be hosting locally, it doesn't
solve the problem of videos embedded within an iFrame (take a bow YouTube,
Vimeo, et al). The following code adds a ilm trailer for Midnight Run from YouTube:

<iframe width="960" height="720" src="http://www.youtube.com/embed/
B1_N28DA3gY" frameborder="0" allowfullscreen></iframe>

Despite my earlier CSS rule, here's what happens:

Chapter 4

[129]

I'm sure DeNiro wouldn't be too happy about this! There are a number of ways of
solving the issue, but by far the easiest I have come across is a small jQuery plugin
called FitVids. Let's see how easy it is to use the plugin by adding it to the And the
winner isn't... site.

First of all, we'll need the jQuery JavaScript library. Load this into your <head>
element. Here, I'm using the version from Google's Content Delivery Network
(CDN).

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.4/
jquery.min.js"></script>

Download the FitVids plugin from http://fitvidsjs.com/ (more information on
the plugin is at http://daverupert.com/2011/09/responsive-video-embeds-
with-fitvids/).

Now, save the FitVids JavaScript ile into a suitable folder (I've imaginatively called
mine "js") and then link to the FitVids JavaScript in the <head> element:

<script src="js/fitvids.js"></script>

Finally, we just need to use jQuery to target the particular element containing our
YouTube video. Here, I've added my Midnight Run YouTube video within the
#content div:

<script>

 $(document).ready(function(){

 // Target your .container, .wrapper, .post, etc.

 $("#content").fitVids();

 });

</script>

http://fitvidsjs.com/
http://daverupert.com/2011/09/responsive-video-embeds-with-fitvids/
http://daverupert.com/2011/09/responsive-video-embeds-with-fitvids/

HTML5 for Responsive Designs

[130]

That's all there is to it. Thanks to the FitVid jQuery plugin, I now have a fully
responsive YouTube video. (Note: kids, don't pay any attention to Mr. DeNiro;
smoking is bad!)

Phew, all ixed. That should keep me on Bobby's Christmas card list!

Chapter 4

[131]

Ofline Web applications
Although there are plenty of exciting features within HTML5 that don't explicitly
help our responsive quest (the Geolocation API, for example), Ofline Web
applications potentially could. As we're aware of the growing number of mobile
users likely to be accessing our sites, how about we provide a means for them to
view our content without even being connected to the Internet? The HTML5 Ofline
Web applications feature provides this possibility.

Such functionality is of most obvious use to web applications (funnily enough;
wonder how they thought up the title). Imagine an online note-taking web
application. A user may be halfway through completing a note when their cell phone
connection drops. With HTML5 Ofline Web applications, they would be able to
continue writing the note whilst ofline and the data could be sent once a connection
is later available.

What's great about the HTML5 Ofline Web applications tools is that they are too
easy to set up and use. Here, we are going to use them in a basic way—to create an
ofline version of our site. That means that if users want to look at our site while they
don't have a network connection, they can.

Ofline Web applications in a nut shell
Ofline Web applications work by each page that needs to be used ofline, pointing to
a text ile known as a .manifest ile. This ile lists all the resources (HTML, images,
JavaScript, and so on) that are needed by the page should it be ofline. An Ofline
Web application enabled browser (Firefox 3+, Chrome 4+, Safari 4+, Opera 10.6+, iOS
3.2+, Opera Mobile 11+, Android 2.1+, Internet Explorer 10+) reads the .manifest
ile, downloads the resources listed, and caches them locally should the connection
be dropped. Simple, eh? Let's do this…

Making web pages work ofline
In the opening HTML tag, we point to a .manifest ile:

<html lang="en" manifest="/offline.manifest">

You can call this ile anything you want but it is recommended that the ile extension
used is .manifest.

HTML5 for Responsive Designs

[132]

You must add the manifest="/offline.manifest" attribute
to the HTML tag of every page you want to be available ofline.

If your web server runs on Apache, you'll probably need to amend the .htaccess
ile with the following line:

AddType text/cache-manifest .manifest

This will allow the ile to have the correct MIME type, which is text/cache-
manifest.

While we're in the .htaccess ile, also add the following:

<Files offline.manifest>

 ExpiresActive On

 ExpiresDefault "access"

</Files>

Adding the preceding lines of code, stops the browser from caching the cache. Yes,
you read that right. As the offline.manifest ile is a static ile, by default the
browser will cache the offline.manifest ile. So, this tells the server to tell the
browser not to!

Now we need to write the offline.manifest ile. This will instruct the browser
about which iles to make available ofline. Here's the content of the offline.
manifest ile for the And the winner isn't... site:

CACHE MANIFEST
#v1

CACHE:
basic_page_layout_ch4.html
css/main.css
img/atwiNavBg.png
img/kingHong.jpg
img/midnightRun.jpg
img/moulinRouge.jpg
img/oscar.png
img/wyattEarp.jpg
img/buntingSlice3Invert.png
img/buntingSlice3.png

NETWORK:
*

FALLBACK:
/ /offline.html

Chapter 4

[133]

Understanding the manifest ile
The manifest ile must begin with CACHE MANIFEST. The next line is merely a
comment, stating the version number of the manifest ile. More on that shortly.

The CACHE: section lists the iles that we need for ofline use. These should
be relative to the offline.manifest ile, so paths may need to be changed
depending upon the resources that need caching. It's also possible to use
absolute URLs if needed.

The NETWORK: section lists any resources that should not be cached. Think of it as an
"online whitelist". Whatever is listed here will always by-pass the cache if a network
connection is available. If you want to make your site content available where a
network is available (rather than only looking in the ofline cache), the * character
allows it. It's known as the online whitelist wildcard lag.

The FALLBACK: section uses the / character to deine a URL pattern. It basically asks
"is this page in the cache?" If it inds the page there, great, it displays it. If not, it
shows the user the ile speciied—offline.html.

Automatic loading of pages to the ofline
manifest
Depending on the circumstances, there's an even easier way of setting an offline.
manifest ile up. Any page that points to an ofline manifest ile (remember that we
do this by adding manifest="/offline.manifest" in our opening <html> tag) gets
automatically added to the cache when a user visits it. This technique will add every
page on your site that a user visits to their cache so they can view it again ofline.
Here's what the manifest should look like:

CACHE MANIFEST

Cache Manifest v1

FALLBACK:

/ /offline.html

NETWORK:

*

One point of note when opting for this technique is that just the HTML of the page
that is visited will be downloaded and cached. Not the images/JavaScript and other
resources it may contain and link to. If these are essential, specify them in a CACHE:
section as already described earlier in the Understanding the manifest ile section.

HTML5 for Responsive Designs

[134]

About that version comment
When you make changes to your site or any of its resources, you must change the
offline.manifest ile somehow and re-upload it. This will enable the server to
provide the new ile to the browser, which will then get the new versions of the iles
and kick off the ofline process again. I follow Nick Pilgrim's example (from the
excellent Dive into HTML5) and add a comment to the top of the offline.manifest
ile that I increment with each change:

Cache Manifest v1

Viewing the site ofline
Now, it's time to test our handiwork. Visit the page in an Ofline Web application
capable browser. Some browsers will warn about ofline mode (Firefox for
example—note the top bar) whilst Chrome makes no mention of it:

Now, pull the plug (or you know, switch off WiFi—that just didn't sound as
dramatic as "pull the plug") and refresh the browser. Hopefully, the page will
refresh as if connected – only it isn't.

Chapter 4

[135]

Troubleshooting Ofline Web applications
When I have problems getting sites to work correctly in Ofline mode I tend to use
Chrome to troubleshoot. The built-in Developer tools have a handy Console section
(access it by clicking the spanner logo to the right of the address bar and then go to
Tools | Developer tools and click the Console tab) that lags up success or failure
of the ofline cache and often points out what you're doing wrong. In my experience,
it's usually path issues; for example, not pointing my pages to the correct location of
the manifest ile.

For the full speciication of the Ofline Web applications, head over to the
following URL:

http://dev.w3.org/html5/spec/Overview.html#offline

HTML5 for Responsive Designs

[136]

Summary
We've covered a lot in this chapter. Everything from the basics of creating a page
that validates as HTML5, to enabling our pages to work ofline when users are
lacking an Internet connection. We've also tackled embedding rich media (video)
into our markup, and ensured it behaves responsively for differing viewports.
Although not speciic to responsive designs, we've also covered how we can write
semantically rich and meaningful code and also provide help to users that rely on
assistive technologies. However, our site is still facing some major shortfalls. Without
putting too ine a point on it—it looks pretty shabby. Our text is un-styled and we're
completely lacking details such as the buttons visible in the original composite.
We've avoided loading the markup with images to solve these issues thus far with
good reason. We don't need them! Instead, in the next few chapters we're going to
embrace the power and lexibility of CSS3 to create a faster and more maintainable
responsive design.

